
A Humane, Graph-Based Representation of
Programs and Analyses

Jon Mathews, Theodore Murdock, Jeremı́as Sauceda,
Ahmed Tamrawi, Suresh Kothari

EnSoft Corp., Ames, Iowa

August 13, 2024

Just as high-level program languages are designed with affordances for
humans, effort must be invested in designing humane representations for
program analyses. Human-machine collaboration must be enabled to tackle
difficult problems now, and to help inspire creative solutions to automate or
semi-automate verification in the future.

We present XCSG, an eXtensible Common Software Graph designed to
enable human-machine collaboration to tackle difficult verification problems
in multi-million line programs. XCSG represents the semantics of the soft-
ware, blends various common analyses, provides a basis for composing new
analyses, and provides affordances required for human-machine collabora-
tion.

A case study is presented based on a verification tool which was proto-
typed and deployed using XCSG. The tool has been used to verify safety and
security properties in 37MLOC, and 8 confirmed bugs have been found to
date. The study details how a useful analysis can be integrated into XCSG,
take advantage of existing affordances for human collaboration, and compose
with existing analyses.

We also present the associated query language which is used to help
rapidly prototype projections of the graph.

1

1 Introduction

We focus on developing program analyses for auditing software, as well as
designing analyses to help the human audit software.1 But why focus on
human-machine collaboration? In [8], Brooks puts forward the thesis that,
“intelligence amplifying systems can, at any given level of available systems
technology, beat [Artificial Intelligence] systems. That is, a machine and a
mind can beat a mind-imitating machine working by itself.” Amplifying in-
telligence is especially crucial for solving hard problems for which automation
by itself does not scale, particularly for large software.

1.1 The Humane Program Analysis Problem

For many program analyses, even those targeted at well-defined properties, it
is necessary to involve a human in the process of deciding whether a program
behavior is a feature, or a defect.

There are two major components of the auditing system: the machine and
the human. Both of these components require time to operate, but there is
also time consumed in their collaboration. A large body of research is focused
on precision and scalability of program analyses [21, 23, 2, 24, 13]. If one
compares the process of auditing software to running a maze of dependencies
and possible program states, this body of research could be characterized
as trying to reduce the size of the maze; this is an important research goal.
However, given the state of the art, the machine is not going to find the exit
by itself. If one considers the human’s necessary role, it is in helping to decide
where to turn at key junctions. For efficiency of the auditing process, the
machine must represent the current state of analysis in a manner which helps
the human make the next key decision, so that the machine can continue to
help the human run the maze.

Therefore, we operate under the assumption that program analyses should
provide a useful next step, they should not be an end in themselves.

In this whitepaper, we explore the following research question: What
are the key features of a system supporting human-machine collaboration in
software auditing? We present XCSG as a representative system designed to
enable human-machine collaboration to tackle difficult verification problems
in multi-million line programs.

1In this context, by audit we include systematic verification of critical safety and secu-
rity properties in multi-million line code bases.

2

2 Motivations and Background

2.1 Why Graphs?

We believe graphs are the central feature of the system, partly as they have a
long history of being useful structures for proving properties in mathematics.
Graphs have been used in compilers for decades; Allen [6] introduced graphs
for use in program optimization.

But what should the graph represent? For a single program analysis, the
required semantics and representations can be specified. For a human, it is
difficult to know in advance what will be needed. Fortunately, it has become
tractable to put whole-program representations in graph databases; there
is increasing interest in using graph databases to help search and analyze
software [27, 15, 33, 18]. The important question is no longer whether we
can put entire Abstract Syntax Trees (ASTs) and program analyses into a
database, rather, how should those abstractions be structured to facilitate
human-machine collaboration?

A weak form of collaboration would be to expect the human to simply
read and interpret the graph. However, the graph should not be an end
in itself. The intermediate results may be expressed as a graph, but that
graph should facilitate human interaction and further automated analyses.
In essence, it should keep the human-machine collaboration flowing. Ideally,
analyses would be designed to help the human stay focused on the most
critical questions, but would also extend the human’s reach with further
analyses aimed at resolving the answers to specific questions. This mode
of collaboration can help overcome issues with tractability of more complex
or fine-grained analyses, and keep the intermediate analysis results more
succinct.

Although many analysis results can be imported into a graph database, we
cannot put all possible analyses into the database; a trivial example being an
infinite trace from a non-terminating program. Further, there are now many
software systems comprising millions of lines of code each. And so we operate
under the additional design pressure of focusing first on those analyses and
representations which can scale. Further, it is important to consider how
these are blended in the graph representation, especially as this affects the
creation and composition of analyses and impacts the collaboration between
the machine and the human.

3

2.2 Graphs in Program Analysis

As noted earlier, graphs have a long history of being useful structures for
proving properties in mathematics, and have long been used in compilers,
going back to Allen’s work on program optimization [6].

Program Dependence Graphs (PDGs) [10] unified control and data flow,
and System Dependence Graphs (SDGs) [17] extended them for interproce-
dural analysis. More recently, PDGs have been adapted for object-oriented
languages, in particular for Java Virtual Machine bytecode [14]. These scal-
able graph representations were created in part for optimizing compilers –
clarifying human intent to the machine. One of our goals is enabling collabo-
ration with the human – in part, clarifying machine-oriented communication
back to the human. The early work on PDGs includes speculation about
their suitability for use in software development environments [22], partic-
ularly for slicing [30, 31]. However, in [28], Waters makes a particularly
compelling argument for an analysis that aids both automation and human
reasoning.

2.3 Locality

Waters presents a method for analyzing loops based on plan building methods
(PBMs), which are presented as a way to make it easier to understand loops
and to guide proofs of correctness [28]. In making the case, Waters uses
an example of a for loop which sums the elements of an array. In a text-
based representation, the initialization of the variable used to accumulate
the result is necessarily separated from the statement which performs the
accumulation, in part due to the loop control statement. Waters goes on to
argue that separating two elements that have a close relationship makes it
harder to understand the effects of the loop.

In light of these issues, graphs provide another obvious benefit: they can
help display related entities next to each other despite lexical separation.

2.4 Blending Analyses

Graphs serve as a common substrate to combine various analyses. As noted
earlier, [27] puts forward the idea that multiple analyses may be combined
in a single graph database, examples including structural, semantic (as in re-
solving identifier bindings), control flow, data flow, and run-time information.

4

Part of their rationale is that many queries are likely to require information
from multiple analyses to express.

We aim for a graph representation which blends analyses in a consistent
form. A uniform representation is helpful for inspiring creative solutions to
difficult problems. Further, we seek analyses which can be composed with
one another, both for automation and human-machine collaboration.

3 XCSG: A Humane, Graph-Based Repre-

sentation of Programs and Related Anal-

yses

3.1 Drivers of Design – What is XCSG?

First, some background context: the platform we use to develop XCSG pro-
vides a facility for viewing the text-based form of a program next to a graph-
based view. The two are linked: clicking on the text translates to nodes
and/or edges in graph, and vice-versa. The platform allows us to create
plug-ins which respond to the selections in either view, and respond in terms
of a graph we calculate (such as data flow graph in response to clicking on a
variable). This enables collaboration between the human and the machine;
the basic user interface elements can be seen in Figure 1.

Example_jimple

(default package)

T

f

m

parameter0

r0.<T: int f> = i0;

r0.<T: int f> = i0

i0 := @parameter0: int;

i0 = @parameter0: int
df(local) df(local)df(local) df(inter)df(local)

public class T extends java.lang.Object
{
 int f;
 public void m(int)
 {
 T r0;
 int i0;
 r0 := @this: T;
 i0 := @parameter0: int;
 r0.<T: int f> = i0;
 return;
 }
}

Figure 1: Enabling Human-Machine Collaboration: The Text and Graph are
Linked.

To ease interaction, the representation should ease navigation of com-
monly used relationships, and provide correspondence back to the text form.
This is accomplished by annotating the graph with source correspondence,
which enables the correspondence between text and graph mentioned above.

5

To enable analysis XCSG must represent the whole program. This could
be accomplished by importing the Abstract Syntax Tree (AST), but for our
purposes this would be merely necessary, and hardly sufficient. This is a
serious design question, and will take the rest of this section to explain.

The equivalence classes used to model the kinds of nodes and edges ul-
timately affect the utility and succinctness of expression. In general, our
design choices come down to deciding how to model the key entities and re-
lationships, and what those equivalence classes should be. This is true for
deciding how to group nodes, but also for edges as well, as it affects transitive
traversal of the graph.

Much of our interaction with XCSG is through a query language, which
is described in Section 4. For now, it suffices to know that it provides a way
to specify traversals over subsets of edges. However, it deliberately does not
provide sophisticated pattern matching found in other graph query languages
[3, 32] (but it does support edges with multiple kinds, more on this later).
The minimality of the query language has put pressure on us to carefully
choose equivalence classes for nodes and edges, where otherwise we might
have simply transliterated the AST. This process results in a model that is
easier to use.

3.2 XCSG for Jimple

The design goals of XCSG include the ability for additional layers of analy-
sis to be incorporated into an XCSG graph (making it eXtensible), and to
provide consistent representations of the semantics of multiple programming
languages (making it a Common software graph); for the remainder of this
section, however, we primarily focus on how XCSG represents the Jimple in-
termediate representation of Java bytecode [4], and the design considerations
behind that representation. XCSG captures semantics of the whole program;
there is enough information to translate from XCSG back to Jimple. 2

The focus of this section is on describing the primary aspects of the design:
the equivalence classes of the nodes, and especially the edges.

The graphs described by XCSG are directed; in practice, the underlying
graph database is expected to support traversal in either direction. Nodes

2Jimple itself is already a step up from Java bytecode in terms of easing analysis and
understanding – Jimple has less than 20 operations, where Java bytecode has more than
200 [4]. Further, Jimple is translated from the stack-based bytecode to three-address code,
which is easier to read.

6

and Edges may have attributes, and typically have names for display pur-
poses, as well as source correspondence for interaction with a text-based
form of the program. Nodes and Edges may have kinds, a term used to
avoid ambiguity with the types of the language being represented in XCSG.
In practice, kinds are implemented in terms of constant strings. However,
XCSG describes relationships between kinds. For example, a static method
has the kind ClassMethod , which is a kind ofMethod . In practice, this helps a
user query by broader or narrower equivalence classes. For example, a query
for the kind Type implicitly includes Java.Class , Java.Interface, Java.Enum,
and Primitive.

At present, the analyses covered by XCSG could be broadly characterized
as: declarative structure, calls, control flow, and data flow. While the equiva-
lence classes of nodes is relatively straightforward to describe, the equivalence
classes of edges has proven an interesting design problem. Achieving locality
in a visual representation is aided by creating edges between related nodes,
but traversal is affected by the choice of direction and the equivalence classes
of edges.

The remainder of this section is organized not by nodes, but by how edges
are used to model relationships, as this is the key to understanding XCSG.
While not intended to be exhaustive, this discussion is intended to be suffi-
cient to understand the example analyses presented in Section 5. Additional
documentation of XCSG is hosted at [5].

3.3 Everything is Connected

Nodes are organized mostly according to lexical nesting using Contains edges,
the subgraph of which forms a tree. This serves two purposes. First, when
visualized, Contains edges are displayed as nodes nested within nodes; we
have found that this is helpful to give context for the location of nodes,
especially those farther down in the Contains hierarchy. Second, it provides
a convenient way to write a query which transitively includes everything
under a given package, type or method, depending on the use case. This
extends all the way down to data flow, a fact which we exploit later in our
case study in Section 5.

The declarative structure of the program covers entities such as types
and methods. It also includes containers such as Project and Library , which
are not necessarily part of the program, but have been useful in practice for
selecting the declarations thereunder.

7

A typical path along Contains edges down to the parameter of a method
goes through nodes with the following XCSG kinds: Project , Package, Type,
Method , Parameter , as can be seen in Figure 1. The outermost node is
the Project , the rest are nested per the hierarchy. Also shown in the figure
is a path through DataFlow Edges, which proceeds from the Parameter on
the left, through DataFlow Nodes which are nested in ControlFlow Nodes
(yellow), and ends at a Field on the right. The names of nodes for declarative
entities are their simple names, as the fully qualified names are implied by
the Contains hierarchy.

3.4 Avoid Overconnecting

Supertype and Overrides relationships are modeled between Types and Meth-
ods , respectively. Typing relations are modeled based on immediate relation-
ships between types, as opposed to transitive closure. While [27] argued for a
similar representation on the basis that many query languages support transi-
tive closure, we do so because displaying a type hierarchy with full transitive
closure of the typing relationships would be unwieldy. On a somewhat re-
lated note, XCSG currently models Methods in the location where they are
declared, as opposed to replicating them to Types which inherit them.

3.5 Use Edges Consistently

Parameters and Fields are kinds of Variables, which have TypeOf edges
to refer to their declared types. Likewise, DataFlow Nodes also have a
TypeOf edge, as these represent strongly typed expressions and local vari-
ables. Having the same edge even across different layers of the model is useful
in this case, because Variables and DataFlow Nodes are also connected via
DataFlow Edges as part of the data flow model.

In XCSG, the TypeOf edge points to the Type representing the declara-
tion. The types could have been represented as string attributes, but wher-
ever possible we have used edges. This accomplishes two goals: first, it
encourages the use of a node to represent identity instead of complex string
encodings, and second, it normalizes access to entities via traversal instead
of by attribute value. Using the value of an attribute of one node to find
another node is more awkward to write as a query, as it requires one to re-
member both the attribute key for the source node as well as a (probably)

8

different attribute key for the target node. Using an edge simply requires
one to remember the kind of the edge and its direction.

3.6 Use Edges To Summarize

Call graphs are one of the most frequently used tools when understanding
programs. The call relationship is a useful summary of potentially many
instances of invocation in a single method.

In an object-oriented language, invocations may be resolved by dynamic
dispatch. When viewed from static analysis, invocations may be resolved
to many possible targets. At a coarse level, these possible invocations from
calling context to target method are summarized in a call graph. In XCSG,
these are represented by Call edges between Methods .

Call edges in XCSG may be created based on many different analyses
of varying precision [9, 21]. In 3.8.3, we describe how XCSG represents call
sites, which can be used to enable such analyses.

3.7 Pick Your Kinds Well

XCSG describes relationships between kinds, which can be applied to edges
as well. This allows the modeling of equivalence classes of edges, which in
turn affects transitivity.

For example, the Supertype kind has subkinds Extends and Implements ,
corresponding to the Java keywords. A traversal using the Extends kind
would encounter a discontinuity at the transition from Java.Class to
Java.Interface. Using the Supertype kind to traverse over both subkinds
reaches all related types.

Choosing equivalence classes for edges is especially important in the data
flow and control flow models as these are the basis for composing new anal-
yses.

As mentioned earlier, the data flow model connects Variables and
DataFlow Nodes using DataFlow Edges to indicate flow. The kind
DataFlow Edge has subkinds LocalDataFlow and InterproceduralDataFlow ,
to distinguish between local flows and flows involving method invocation or
heap access. In practice, a client analysis of the data flow analysis uses
the DataFlow Edge kind to traverse both. However, a data flow analysis
which creates or refines the possible flows can take advantage of semantics
implied by these kinds. Since there are no stack directed pointers in JVM

9

bytecode, local flows can be calculated flow sensitively without an interpro-
cedural analysis. InterproceduralDataFlow edges correspond to flows that a
points-to analysis may or may not create depending on sensitivity; points-to
is still an area of active research [23, 7, 13, 2, 24].

In the next section, we discuss exceptions to transitivity – the edge kinds
required to express important roles for instructions, and how those are related
to data flow.

3.8 Enable Analyses

The data flow model is by far the most rich in terms of representation. In
the remainder of this section, we primarily discuss how the data flow model
captures the semantics of instructions, thereby allowing other analyses to be
written in terms of XCSG.

3.8.1 Operators and Assignments

The data flow representation has may subkinds, roughly corresponding to
the various instructions found in Jimple.

The data flow representation is fine-grained with respect to operators.
The operands connect to an Operator via DataFlow Edges, which leads to a
straightforward visualization, shown in abstracted form in Figure 2. In the
figure, all edges are of the kind DataFlow Edge, but the edges have an extra
tag to distinguish left vs. right. The semantics of the operation are captured
in the specific subkind of DataFlow Node, in this case Addition. Finally, the
result flows to another subkind, Assignment . The equivalence classes have
been carefully chosen to allow queries to pass through based on the common
parent kinds, yet retain enough detail to enable fine-grained analyses to use
the same representation as a basis. Assignments are distinct from Operators,
as these represent no transformation of the underlying bits.

Instantiations represent references to new instances and are typically im-
mediately passed to a class initializer.

3.8.2 Blending Layers

Another interesting feature of the data flow representation is the use of a
DataFlowCondition node to represent the use of a value to influence a con-
dition. In visualizations focused on the data flow layer, flows terminating at

10

c = a + b;

a

DataFlow Node

b

DataFlow Node

a + b

Addition

c =

Assignment

leftOperand rightOperand

Figure 2: XCSG Operator

a DataFlowCondition are a signal to the human that the current flow could
result in information flow. Since the DataFlowCondition node is immediately
under the ControlFlowCondition, it is possible to navigate programmatically
from one to the other, and to retrieve the successors in the control flow graph.

In bytecode, synchronization is implemented using instructions which lock
and unlock an object, called enter monitor and exit monitor, respectively.
In XCSG, monitors are modeled with separate DataFlow Nodes much like
DataFlowConditions , for similar reasons.

3.8.3 Array and Field Access, Call Sites, and Instantiation

The remaining data flow subkinds discussed here are some of the more com-
plicated and interesting ones. Analysis developers interested in points-to
analyses should find these particularly relevant. These are analogous to Op-
erators, but are distinct as they generally have unique kinds for operand
edges. These operand kinds are not subkinds of DataFlow Edge, to prevent
a query for direct data flow from spilling over into all data dependencies
automatically.

Array and Field Access Array access is modeled similarly whether in
a rvalue or lvalue context, using ArrayRead or ArrayWrite kinds, respec-
tively, as can be seen in Figure 3. An ArrayRead has two named operands,
one for the array reference and one for the index expression. These named
operand kinds are not DataFlow Edges, and hence are shown as dashed lines.

11

a[i] = 5;
k = a[j];

j

DataFlow Node

5

Literal

a[i] =

ArrayWrite

a[j]

ArrayRead

[•]

ArrayComponents

k =

Assignment

i

DataFlow Node

a

DataFlow Node

a

DataFlow Node

ArrayIdentityFor

ArrayIdentityFor

ArrayIndexFor

ArrayIndexFor

Figure 3: Array access in XCSG

DataFlow Edges flow through the ArrayComponents node, which represents
an abstract object on the heap.

Instance field access is analogous, the access nodes having parent kind In-
stanceVariableAccess . The flows, however, connect to the Field node instead
of an ArrayComponents node. Without further qualification of these edges,
a simple traversal corresponds to a field-sensitive but heap-insensitive data
flow analysis. The ArrayComponents node differs from a Field in that, to
represent flows conservatively, there would have to be a single ArrayCompo-
nents node for all array accesses. Given a main method, a points-to analysis
would produce ArrayComponents nodes corresponding to abstract objects,
and connect to the ArrayAccess nodes via InterproceduralDataFlow edges.

Instance fields require a base object operand in addition, and so there is
an additional node called an InstanceVariableAccess interposed in the flows
to serve a role analogous to an Operator . The representation varies slightly
for an access which is an rvalue vs an lvalue, the former having subkind
InstanceVariableRead , the latter InstanceVariableWritten. Flows into and
out of static fields are directly connected to the Field , as the parent Type is
implied by the Contains edge between them.

In terms of human affordances, the representation has source correspon-

12

dence on the access nodes, which means that selections in a text editor cor-
respond to both the field identifier and the point in control flow at which the
field was accessed, which may be leveraged by interactive analyses.

T1

m1

T2

m2

class T1 {
 void m1(T2 t2) {
 t2.m2(5);
 }
}

i
Parameter

return
ReturnValue

t2
IdentityPass

5
ParameterPass

t2.m2(5)
CallSite

InvokedType

Invoked-
Signature

class T2 {
 int m2(int i) {
 return i;
 }
}

Figure 4: XCSG CallSite

Call Sites and Array Instantiation A call site is perhaps one of the most
sophisticated models, as it represents the combination of an arbitrary number
of parameters, as well as a target object in the case of instance methods. Fig-
ure 4 illustrates the CallSite model. In XCSG, a CallSite is a DataFlow Node
representing the value returned by invoking the method, similar to an Op-
erator ; if void, the node still exists as a placeholder for the event occurring.
CallSites have subkinds corresponding to the dispatch mode, to distinguish
between static and dynamic dispatch. CallSites representing static dispatch
are connected via an InvokedFunction edge, and dynamic dispatch via an In-
vokedSignature edge to a representative Method node. The actual arguments
to a CallSite have kinds ParameterPass (and IdentityPass , corresponding to
the receiver of an instance method), and are connected to the CallSite via
edges with kinds ParameterPassedTo and IdentityPassedTo. These edges
have attributes to indicate the index of each argument. An analysis of po-
tential call targets may represent flows to the invoked methods by connecting
the actual arguments to the formal arguments via InterproceduralDataFlow
edges, and likewise from the Return nodes of possibly invoked methods back
to the CallSite node.

13

The model for ArrayInstantiation is somewhat similar to a CallSite, but
lacks an edge to a method, and supports an arbitrary number of edges corre-
sponding to the expressions establishing the length of each dimension. The
node represents the reference to the heap. Instantiation of a non-array type
is similar, but does not require extra edges.

3.8.4 Array Instantiation

Finally, the allocation of arrays is modeled using an ArrayInstantiation node.
Both single and multiple dimension arrays are folded into the same repre-
sentation. ArrayInstantiation is somewhat similar to a CallSite, but lacks
an edge to a method, and has an arbitrary number of edges corresponding
to the expression establishing the length of each dimension. The node itself
represents the reference to the abstract heap object, which would eventually
flow to the array reference edge of an ArrayAccess .

In the next section, we elaborate on the query language that we use to
select subgraphs for interactive display purposes.

4 Interactive Query

In the previous section, we described how XCSG represents whole programs
and certain common program analyses. Although XCSG stands by itself,
some of the pressure that influences design choices behind it can be traced
to the query language used most often to interact with it.

4.1 Design Considerations

The query language is implemented as an embedded domain-specific Lan-
guage (DSL) in Java, and follows a builder pattern, taking inspiration from
[11, 12]. The rationale behind making a DSL is that it adds a layer of abstrac-
tion for expressing what to select from the graph, provides some conciseness
of expression, and leaves a layer of indirection permitting query optimiza-
tion. The rationale behind making it embedded is that it avoids recreating
the useful features already present in an imperative language such as Java.

The query language is usually informally referred to simply as Q, which
is the simple name of the Java interface.3 Q is used to describe what to select

3The single letter name was chosen to reduce the number of keystrokes required to

14

from a graph, the expression yielding a subgraph. By the builder pattern,
almost all methods in the interface Q return an expression of type Q, and
chaining method calls effectively specifies the query AST. A chain of Q ex-
pressions can be evaluated by calling the eval() method, which transitions
to a graph API suitable for imperative implementations. Methods of Q are
responsible for ensuring that the subgraph returned is a proper graph, where
edges are present iff the incident nodes are as well. From the perspective of
Q, the entire graph database is an expression called universe(). Query
results are therefore confined to returning subgraphs of the universe.

The primary use case behind the design of Q is enabling an analysis de-
signer to quickly draft single line queries to select relevant portions of the
graph – in essence, enabling them to “look around the corner” from their
current position, and bring together related but lexically non-local elements
of the program. Unlike many other graph query languages [3, 32], Q delib-
erately unions all matches at each step. For example, given several Method
nodes as an origin, a query for a call graph returns a single unified graph, as
opposed to returning individual matches to a pattern.

One of the first considerations in the design of Q was making it relatively
easy to express traversals of the graph, particularly call graphs. We introduce
the semantics of Q gradually, in terms of examples.

First, we note that kinds are denoted using string constants from the
XCSG interface, e.g. XCSG.Method is a string constant representing a
Method kind. Queries for XCSG kinds are implicitly handled by the un-
derlying graph database such that any subkinds are also included in the
result. Further, the underlying graph database indexes graph elements by
their kinds and attribute values, for better performance. For the remainder
of this section, we will assume the string constants are statically imported,
for succinctness of expression.

In Q, the expression
universe().nodesTaggedWithAny(Method) selects the subgraph con-
sisting of all Methods, and no edges. This shows how the builder notation
is used to chain together queries, where universe() is the entire graph
database, and nodesTaggedWithAny selects matching nodes from the ex-
pression on the left.

A more interesting example is a forward call graph, which can be ex-
pressed as edges(Call).forward(x), where x is a previous query for

write queries in Java.

15

the origin Methods. But this expression is hiding a lot of behavior that we
have to unpack to fully explain what it does.

First, edges(Call) is a statically imported convenience method equiv-
alent to
universe().edgesTaggedWithAny(Call). This query
edgesTaggedWithAny(Call), selects edges of kind Call . 4 However, a
subtle point is that this selection process retains all nodes from the expres-
sion on the left. As a result, the query
edgesTaggedWithAny keeps every node from the universe. This is by de-
sign: if we are trying to build a call graph from a given method, we usually
expect to see that method in the result, even if it is not connected. As im-
plemented, this works as expected. Alternatively, if edge selection had been
implemented to first filter nodes by connectivity, and if the method happened
to be unconnected by Call edges, it would lead to the counter-intuitive result
of an empty call graph.

The composition of the builder notation raises another point of the de-
sign: the input (the graph on the left of the expression) can be an arbitrary
subgraph of the universe. Since Q is embedded in Java, it can be composed
with algorithms written in an imperative style, not necessarily written us-
ing Q. In the implementation we use, there is a lower level API oriented
around graph data structures, with direct access to the nodes and edges.
This lower level graph API has been used to write algorithms for calculating
dominators, strongly connected components, transitive closure, and other al-
gorithms. These algorithms can be interleaved with Q as needed, providing a
path to evolving from queries that start out as a single line, to sophisticated
program analyses.

4.2 Query Expressions and Use Cases

Query expressions in Q correspond to methods on the interface, and can
be roughly categorized as providing 1) selection by tags or attributes, 2)
set-based expressions, 3) traversals.

We give a brief overview of each category, pointing out unusual aspects
and typical uses.

4Tags are the way that XCSG kinds are encoded in the implementation; we use the
terms interchangeably.

16

4.2.1 Selection Expressions

The selection expressions are, of course, expected because they are necessary
to match nodes and edges for other queries. Selection by tags and attributes
work generally as expected, with the following caveats. First, tags are al-
lowed to have relationships to one another, such that selection by one tag
implies that others should also be selected. This was used to implement
XCSG, which specifies relationships between kinds such that a kind such as
InstanceMethod is also a Method . Second, selections may pertain to either
nodes or edges; when selecting nodes all edges are excluded, and when select-
ing edges all nodes are retained. This was intentional, as described in 4.1, to
lean towards making creation of traversals for things like call graph relatively
straightforward.

In addition to selection by tags and attributes, there are a few convenience
expressions for selecting common named entities in XCSG. For example,
universe().methods("foo")selects all methods named foo. This could
otherwise be written as
universe().nodesTaggedWithAny(Method)
.selectNode(name, "foo"). Note that chaining expressions in this
case is effectively an intersection of the tag and the attribute value.

4.2.2 Set Expressions

Set expressions include union, intersection, and difference. Union
and intersection can be thought of as operations on the underlying node and
edge sets of the graphs represented by the query expressions. In general,
graphs obtained from Q never contain duplicate references to underlying
graph elements, as the underlying graphs are comprised of sets of nodes and
sets of edges.

The difference expression is peculiar in that it necessarily excludes
edges incident on removed nodes; in practice we have found that difference
is best used when the query expressions correspond to graphs with only nodes.
However, there is a differenceEdges expression for specifying that only
edges be removed from the expression on the left.

In addition to the set expressions, the expression
a.induce(b) adds edges from b to a, where an edge is added iff a contains
both of the nodes it is incident on. For example, the call graph edges between
given methods can be induced by methods.induce(edges(Call)).

17

4.2.3 Traversal Expressions

In principle, we need only a single traversal expression that takes direction
and path length. In practice, there are many for convenience.

The expression forward was previously described in 4.1; it essentially
returns the reachable subgraph starting from the given nodes, along the
direction of the edges. The expression reverse is the same, but walks
against the direction of the edges.

Traversal expressions are essentially a cross product of direction and
path lengths of 1 step, n steps, and infinite steps. In addition, between
is logically equivalent to the intersection of forward and reverse. The
betweenStep expression is useful for finding immediate relationships be-
tween two subgraphs. For example,
edges(Call).betweenStep(a,b) gives the induced call graph between
the methods in a and b, where the edges must start in a and end in b in a
single step.

Probably the most common traversals are along the Contains edges, as
these can be used to give lexical context to the query result, or to select the
subgraph under a package, type or method. The composability of the queries
makes it easy to put the elements corresponding to a complex analysis results
in context; given an arbitrary subgraph x, the enclosing lexical entities can be
added with the expression edges(Contains).reverse(x).union(x).

In addition to the syntax already shown, there are alternate forms of the
traversal expressions which simply swap the operands. For example, a call
graph can also be expressed as
x.forwardOn(edges(Call)). In practice this form is sometimes more
convenient as one usually starts by selecting nodes, then expecting to traverse
along some subset of edges. This form puts the nodes first, making it more
natural to use the builder notation to continue a previous expression.

All of the traversal expressions discussed up until this point are designed
to include the origin nodes in the result of the query (the rationale given
in 4.1), but this is not always a desired behavior. There are many occasions
where including the origin nodes in the result is awkward or more verbose; one
simple example is in obtaining the immediate members of a type, exclusive
of the type itself. For this reason, the expressions predecessors and
successors exist to return the immediate predecessors or successors of
the given nodes.

18

4.2.4 Example Use Cases

For a flavor of how queries are used in practice, we offer a few short examples.
First, data flow is traversed similarly to call graphs, using the query in

Listing 1, which illustrates how to get a forward data flow graph from a given
variable.

1 Q dataFlow = edges(DataFlow Edge).forward(someVariable);

Listing 1: Data Flow Query

Second, a complete control flow graph for a method can be obtained using
the queries in Listing 2. The query starts by matching everything under the
method, filters by control flow nodes, then induces the control flow edges.

1 Q body = edges(Contains).forward(someMethod);
2 Q cfgNodes = body.nodesTaggedWithAny(ControlFlow Node);
3 Q cfg = cfgNodes.induce(edges(ControlFlow Edge));

Listing 2: Control Flow Graph Query

5 Case Study: Enabling Intelligence Ampli-

fication

In this section, we demonstrate how a new analysis can be integrated into
XCSG and leverage the existing graph representation to 1) facilitate human-
machine collaboration and 2) facilitate composition with other analyses, to-
gether enabling the goal of intelligence amplification.

Precursors of the XCSG graph representation have been used to build
tools for interactive program analysis of Android apps, specifically for search-
ing for sophisticated, novel malware which defies a priori description, making
completely automatic detection difficult or impossible [16].

Since then, XCSG has been used to develop sophisticated analysis tech-
niques to aid in the verification of critical safety and security properties of
the Linux kernel [25], with an approach called Evidence-Enabled Collabora-
tive Verification (EECV). This approach was applied to three versions of
the Linux kernel, totaling 37MLOC. To date, the approach has found 8 con-
firmed bugs in the Linux kernel. Details of the complete set of techniques
used to scale up verification, specifically, the classification techniques used to
partition the verification instances are presented in [19, 26].

19

In this section, we present a case study based on one of the core concepts
behind the EECV approach: the Projected Control Graph (PCG). We present
the PCG model because of its value for human-machine collaboration: in the
process of auditing large code bases, it is important to focus the human’s
attention on the key aspects of the program. One way to accomplish this is
through the PCG.

Figure 5: Example CFG and PCG with Respect to Events

The PCG is a compact derivative of the Control Flow Graph (CFG),
defined with respect to a set of problem-specific program artifacts. Mathe-
matically, it can be precisely defined using the homomorphism concept from
abstract algebra. We refer to [26] for mathematical details of PCG. PCG
is designed to address two important verification challenges: (a) exponential
growth of number of paths in CFG, and (b) the exponential complexity of
checking path feasibility. PCG retains only the nodes necessary to retain
all distinct traces, but there is one and only one path corresponding to each
distinct trace. A CFG may have a very large number of distinct paths, but
only a very small number of distinct traces. PCG optimizes the verification
of each and every path by by retaining only one path per trace. [26] presents

20

an efficient algorithm to transform a CFG to an PCG in linear time with re-
spect to nodes and edges. Figure 5 compares the two with respect to selected
events in the CFG, corresponding to lock and unlock events.

We have implemented an algorithm for calculating an PCG in terms of
XCSG, and reified the resulting graph in the XCSG graph database. The
XCSG-based PCG model is calculated using the control flow graph, and takes
ControlFlow Nodes to specify relevant program artifacts. Parameterization
in terms of program artifacts allows a PCG to be composed with existing
analyses – other analyses can perform arbitrary calculations to arrive at
relevant program artifacts. Or, it can take advantage of existing affordances
and be driven by user selections of text or nodes (as described in Section 3),
allowing the user to quickly construct PCGs based on arbitrary program
artifacts. These capabilities enable an analysis designer to quickly prototype
new ideas for analysis using the user interface and query language to get quick
first approximations of interesting events, and over time, develop powerful
analyses which calculate the events automatically.

There are other interesting ways we leveraged XCSG when integrating
the PCG analysis.

First, to make it easier to select a wider range of program artifacts, we
added a small bit of code to walk from a DataFlow Node up to the enclosing
ControlFlow Node. This allows us to quickly inspect the PCG with respect
to DataFlow Nodes such as an Assignment . With a click, we can quickly tell
whether the selected node is within a loop. If we select multiple nodes, we
can see how their execution traces are related.

Second, PCGs as applied to Linux in C did not have to consider excep-
tional control flow, as an analysis in Java might. Because of the way XCSG
models ExceptionalControlFlow Edges, we had the opportunity to quickly
run an experiment where the PCGs take as input both normal and excep-
tional control flow. We were able to trivially parameterize our initial al-
gorithm for producing PCGs to make calculations on any given subgraph,
making it easy to toggle inclusion of exceptional control flow edges. Because
the semantics of an exceptional control flow edge differ from a regular control
flow edge in that the relevant program statement may or may not have exe-
cuted before the exception was raised, we are still in the process of working
through implications for other analyses that would build off of our PCG rep-
resentation. However, we were delighted that we could start experimenting
almost immediately.

Third, once we implemented support for selection of DataFlow Nodes, we

21

realized that we could create a view which crosses data flow traversal with an
PCG. There are already interactive views which step along data flow, which
are useful in themselves. But often one encounters interesting events along
these data flows, and the next question becomes “which of these statements
are executed first?” To answer this question immediately, we can manually
select these data flow nodes to define relevant program artifacts for a PCG.
But if we decide this view is useful, with just a little more effort we can create
a new view which automatically projects the PCG with respect to the events
implied by data flow graph traversal.

In these ways, XCSG has made it easier for analysis developers to take
advantage of affordances for collaboration with the human to solve hard
problems, as well as enabled composition through the graph, all to help
enable intelligence amplification.

Our long term research goal is to apply PCGs to new classes of analysis
problems, using XCSG as a base.

6 Implementation and Performance

To give a sense of performance, we give some statistics about the translation
process as well as an algorithm that runs as a post-processing step using
XCSG itself as input. Programs are first translated into Jimple, then trans-
lated to XCSG using version 2.6.1 of Atlas, available at [1]. Experiments
were performed on a 1.8 GHz quad core Intel Xeon CPU (E5-2603 v2) with
128GB RAM and running Ubuntu 14.04.3 LTS.

Two programs were translated: OpenJDK 7u80 b32, and a small “hello
world” program. The results are shown in Table 1. We used Class Hier-
archy Analysis (CHA) [9] to produce conservative estimates for Call and
InterproceduralDataFlow edges.

When converted to Jimple text, the OpenJDK is over 4.2 million non-
blank lines. The translation of OpenJDK takes 77 minutes to complete and
takes 16GB in RAM to store the full in-memory graph. 20,925 types in
OpenJDK 7 were translated.

For contrast, we also translated a “hello world” – nearly the smallest
possible Java program. For this program, we used SPARK [20] from [4] to
conservatively calculate which OpenJDK API classes might be loaded during
a run of this program, and translated only those classes. This included 2,505
types.

22

As part of ongoing experiments, we implemented the loop identification
algorithm from [29], which analyzes the XCSG control flow model and an-
notates it with results. This analyzer takes less than a minute to run on the
OpenJDK.

XCSG Kinds All OpenJDK
HelloWorld +

Subset of OpenJDK

Node

Method 171,279 21,002

Type 20,925 2,505

Variable 408,317 44,879

ControlFlow 2,676,789 297,214

DataFlow 7,853,827 833,740

Other 101,912 12,580

Total 11,233,049 1,211,920

Edge

Call 3,611,359 128,172

InterproceduralDataFlow 11,945,382 463,461

Other 32,497,748 3,505,174

Total 48,054,489 4,096,807

Translation Time 77 minutes 4 min

In-Memory Database 16GB 2GB

Table 1: XCSG Representation in Terms of Graph Elements

7 Related Work

7.1 Graphs in Program Analysis

Graphs are clearly central to XCSG. We have already discussed work related
to graph representations of programs in Section 2. As many interesting
analyses have already been developed in terms of graphs, we are interested
in exploring how such analyses could be integrated into XCSG in ways that
enable composition of analyses while ensuring that the same representation
facilitates human-machine collaboration.

One such analysis was presented in Section 5, based on Projected Control
Graphs (PCGs) [26]. PCGs have some relationship to the control dependence
edges defined by PDGs [10]; given control dependence edges, it should be pos-
sible to construct an PCG. However, we hasten to note that a graph in terms
of control dependence edges is distinct from a PCG: PCG is derived using a
homomorphic mapping from a Control Flow Graph (CFG), with semantics
which should be immediately familiar to anyone familiar with CFGs. PDG

23

on the other hand is derived using the concept of dominator relationships.
PCG allows us to create a much smaller graphs to capture the essential con-
trol flow behavior, focused with respect to a specific set of program artifacts.
This focus is an important aspect, and will drive our future research.

7.2 Graph Query in Program Analysis

[27] reported on a prototype which imports Java programs into a Neo4J [3]
graph database. They put forward a concept of overlays, examples includ-
ing structure and data flow. They noted that many queries would inherently
use information from multiple overlays, and gave several examples in terms of
Neo4J. The prototype represents the program by translating Abstract Syntax
Tree (AST) nodes more or less directly from the internals of javac (for exam-
ple, a method declaration in the graph database would be given the name of
the corresponding AST node in javac:“JCMethodDecl”). Compared to [27],
XCSG has much more in common with PDGs and SDGs, as instruction-level
detail is captured via the control and data flow representation. In addition,
XCSG aims to normalize the nomenclature used and specifies relationships
between kinds.

[15] presents a tool for querying large C/C++ programs, also imple-
mented using [3]. They note that, while they feel their current model allows
for a large number of succinctly expressed queries, as of Neo4J version 2, the
node label feature would allow them to express relationships between kinds
of nodes, allowing further succinctness. However, Neo4J does not currently
support multiple labels on edges, which is a feature leveraged by XCSG. They
note a possible workaround, but add that “specifying matches in general be-
comes at best less succinct and at worst impossible”

[33] describes an approach for discovering vulnerabilities by representing
the ASTs, CFGs, and PDGs, again in a Neo4J graph database. They demon-
strate that their approach can discover vulnerabilities in the Linux kernel,
but note that detection is limited by the boundaries of static analysis. By
contrast, XCSG is designed to enable a human and a machine to overcome
immediate limitations, and to enable research into automation for program
analysis.

Of all the related work, [18] may be the closest in spirit. Among their
contributions is, “the novel insight that PDGs offer a unified approach that
enables exploration, specification, and enforcement of security guarantees.”
With respect to the exploration aspect, they note that this is helpful when

24

programs have no predefined security policies, necessitating discovery of
application-specific ones. For many hard program verification problems, we
expect to require such exploration, and this has greatly influenced our ap-
proach with XCSG. They also have a domain-specific language (DSL) called
PidginQL. The grammar of PidginQL as described is very similar to the Q
query language described in Section 4; one major distinction is that Q is im-
plemented as an embedded DSL, making integration with Java code relatively
seamless. Some of the user defined functions they describe are implemented
in Java, using Q as a convenience for accessing the graph.

8 Conclusion

We have presented the eXtensible Common Software Graph, a humane,
graph-based representation of whole programs and related analyses. XCSG
has been designed to enable human-machine collaboration to tackle difficult
verification problems in multi-million line programs. It accomplishes this
not only by including a complete representation of the program semantics,
but more importantly through careful choices about the equivalence classes
of both nodes and their relationships, blending layers of analyses to enable
more sophisticated queries. It is these equivalence classes which directly in-
fluence the ease and succinctness of human interactions with the program
model, enabling more efficient human-machine collaboration.

Ultimately, human-machine collaboration must be enabled to tackle dif-
ficult problems now, and to help inspire creative solutions to automate or
semi-automate verification in the future. We have presented a case study
based on the underlying analysis used to verify critical safety and security
properties in the Linux kernel to illustrate how a new analysis can be blended
into XCSG, thereby leveraging the existing affordances for human collabo-
ration and enabling composition with other analyses. As new analyses are
blended into XCSG, they further enhance the ability of the human to com-
pose analyses in previously unanticipated ways, thereby amplifying intelli-
gence through human-machine collaboration. Maturing XCSG would not be
possible without practitioners. We would like to thank the many post docs,
graduate students, and undergraduate students at Iowa State University and
our colleagues at EnSoft who used XCSG and it’s many drafts during the
DARPA APAC program and those who continue under the DARPA STAC
program. In particular we would like to thank Tom Deering and Ben Holland

25

for their many detailed suggestions to improve XCSG and the creative ways
in which they have used it. We would also like to thank Nikhil Ranade and
Kevin Korslund for their support in preparing this paper.

References

[1] Atlas Website.

[2] DOOP: Framework for Java Pointer Analysis.

[3] Neo4j Graph Database.

[4] Soot - A Java optimization framework.

[5] XCSG - Extensible Common Software Graph.

[6] F. E. Allen. Program optimization. Annual Review in Automatic Pro-
gramming, 5, 1969.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages
259–269, New York, NY, USA, 2014. ACM.

[8] F. P. Brooks Jr. The computer scientist as toolsmith II. Communications
of the ACM, 39(3):61–68, 1996.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the 9th
European Conference on Object-Oriented Programming, ECOOP ’95,
pages 77–101, London, UK, UK, 1995. Springer-Verlag.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[11] M. Fowler. Domain-specific languages. Pearson Education, 2010.

26

[12] S. Freeman and N. Pryce. Evolving an embedded domain-specific lan-
guage in Java. In Companion to the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 855–865, New York, NY, USA, 2006. ACM.

[13] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.
Information-flow analysis of Android applications in DroidSafe. In Proc.
of the Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2015.

[14] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. Int. J. Inf. Secur., 8(6):399–422, Oct. 2009.

[15] N. Hawes, B. Barham, and C. Cifuentes. Frappé: Querying the Linux
kernel dependency graph! In Proceedings of the GRADES’15, page 4.
ACM, 2015.

[16] B. Holland, T. Deering, S. Kothari, J. Mathews, and N. Ranade. Secu-
rity toolbox for detecting novel and sophisticated Android malware. In
Proceedings of the 37th International Conference on Software Engineer-
ing - Volume 2, ICSE ’15, pages 733–736, Piscataway, NJ, USA, 2015.
IEEE Press.

[17] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs. In Proceedings of the ACM SIGPLAN 1988 Confer-
ence on Programming Language Design and Implementation, PLDI ’88,
pages 35–46, New York, NY, USA, 1988. ACM.

[18] A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and enforcing
security guarantees via program dependence graphs. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2015, pages 291–302, New York, NY, USA,
2015. ACM.

[19] S. Kothari, P. Awadhutkar, A. Tamrawi, and J. Mathews. Modeling
lessons from verifying large software systems for safety and security. In
2017 Winter Simulation Conference (WSC), pages 1431–1442. IEEE,
2017.

27

[20] O. Lhoták. Spark: A flexible points-to analysis framework for Java.
2002.

[21] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation. ACM Trans.
Softw. Eng. Methodol., 18(1):3:1–3:53, Oct. 2008.

[22] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In Proceedings of the First
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, SDE 1, pages 177–184, New
York, NY, USA, 1984. ACM.

[23] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: Understanding object-sensitivity. SIGPLAN Not., 46(1):17–30,
Jan. 2011.

[24] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras. Introspective anal-
ysis: Context-sensitivity, across the board. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, pages 485–495, New York, NY, USA, 2014.
ACM.

[25] A. Tamrawi and S. Kothari. Evidence-enabled collaborative verifica-
tion of software for safety and cybersecurity. Submitted to IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST 2016).

[26] A. Tamrawi and S. Kothari. Projected control graph for computing
relevant program behaviors. Science of Computer Programming, 163:93–
114, 2018.

[27] R.-G. Urma and A. Mycroft. Source-code queries with graph
databases—with application to programming language usage and evo-
lution. Science of Computer Programming, 97:127–134, 2015.

[28] R. C. Waters. A method for analyzing loop programs. IEEE Trans.
Softw. Eng., 5(3):237–247, May 1979.

28

[29] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying
loops in decompilation. In H. Nielson and G. Filé, editors, Static Analy-
sis, volume 4634 of Lecture Notes in Computer Science, pages 170–183.
Springer Berlin Heidelberg, 2007.

[30] M. Weiser. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

[31] M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, July 1982.

[32] P. T. Wood. Query languages for graph databases. SIGMOD Rec.,
41(1):50–60, Apr. 2012.

[33] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In Proceedings of the
2014 IEEE Symposium on Security and Privacy, SP ’14, pages 590–604,
Washington, DC, USA, 2014. IEEE Computer Society.

29

	Introduction
	The Humane Program Analysis Problem

	Motivations and Background
	Why Graphs?
	Graphs in Program Analysis
	Locality
	Blending Analyses

	XCSG: A Humane, Graph-Based Representation of Programs and Related Analyses
	Drivers of Design – What is XCSG?
	XCSG for Jimple
	Everything is Connected
	Avoid Overconnecting
	Use Edges Consistently
	Use Edges To Summarize
	Pick Your Kinds Well
	Enable Analyses
	Operators and Assignments
	Blending Layers
	Array and Field Access, Call Sites, and Instantiation
	Array Instantiation

	Interactive Query
	Design Considerations
	Query Expressions and Use Cases
	Selection Expressions
	Set Expressions
	Traversal Expressions
	Example Use Cases

	Case Study: Enabling Intelligence Amplification
	Implementation and Performance
	Related Work
	Graphs in Program Analysis
	Graph Query in Program Analysis

	Conclusion

